I may now pass to the third branch of my subject and speak of the use of bacteria as scavengers in the world. A tree in the forest falls to the ground and it lies unmolested. It is at first hard, solid and impervious to all of the normal agencies. No insects can touch it; they cannot bite the hard wood to any extent. It lies there month after month. Little by little it begins to soften.

First the bark begins to get soft and finally falls off. By and-by the wood gets quite soft, so that you can easily cut it, and perhaps run a pointed stick into it. Then insects get hold of it, and they begin to eat it; they bore tunnels and begin to crawl through it. The tree grows softer and softer, and finally, as you all know from observation many times, the trunk of this tree becomes softened into a mass of brown powder which sinks down into the soil and disappears. What has become of that tree? A bird dies and falls on the ground, and unless some animal comes along to eat the bird you will notice that the tissues of the bird very soon begin to undergo changes; they begin to soften; gases rise from them; the flesh of the bird undergoes the process which we call putrefaction, and that putrefaction results in the gradual decomposition of the tissues. Little by little part of the material passes off into the air as gas, and the rest of it sinks down into the soil and the bird disappears. What has produced all of these changes? Did it ever occur to you to ask what the condition of the surface of the earth would be at the present time if it were not for these processes which we call the processes of decay? Suppose there were no agencies which caused the gradual softening and destruction of trees and the dead bodies of animals. Long since the vegetable and animal life of this world would have disappeared, and we should have had the surface
of the earth covered with the accumulations of the growth of forests in past ages that would have tumbled upon each other until there would be such an accumulation of dead trees and dead leaves and dead vegetation of all kinds on the surface of the earth that plants would not be able to grow. The dead bodies of all the animals that have lived in the past would have been piled up until the whole surface of the world would have been so covered by the dead bodies of animals and plants that life would have become impossible. These scavengers, these bacteria, are absolutely necessary to us. It is through the agency of certain bacterial organisms that the tree is softened so that insects can get at it. It is through the agency of bacteria that the tissues of the bird are decomposed and gases produced which pass off into the air. It is these bacteria which cause all the changes in the bodies of animals and vegetables, decomposing them until they gradually sink down in the soil and disappear. So it is through their agency and this alone that the surface of the earth is kept in a condition which renders it possible for life to continue to exist. Of course you have all had experience of the value of bacteria as scavengers in removing bad odors. We speak of scavengers as of value in removing decaying material, but it is the bacteria which produce the decay, and it is through their agency that all of these dead bodies are broken to pieces and brought into a condition in which they can be either incorporated into the soil or passed off into the air.

Perhaps I may here also say a word in regard to the agency of bacteria as scavengers in the human body. We look upon bacteria in our bodies as causes of disease rather than things which are of any value, and yet a healthy person always has bacteria in large quantities in his mouth, in his stomach, and in his intestines. The bacteria are always migrating in the body to places of abnormal growths, and there is considerable reason for thinking that to a certain extent these bacteria act as scavengers in the human body. Some of them unquestionably act as producers of disease, but to a certain extent it seems that these bacteria are of a value in assisting in the decomposition of tissues that should be decomposed, and there
is reason for thinking that they assist in the digestion of food. There is no question that bacteria may assist in the process of digestion and it is doubtless a fact that the bacteria which we take into our alimentary canal are not wholly injurious. They may be possibly beneficial to us either in the line of scavengers in removing material which ought not to remain in our bodies, or in assisting digestion. This point, however, is not yet demonstrated, and I merely allude to it as a possibility.

Did it ever occur to you to ask why nature is perpetual? You know animals and plants have continued to live on the surface of the earth for hundreds and hundreds of centuries. The vegetation that has been growing on the surface of the earth has been constantly taking food out of the air and taking food out of the soil, and animals have been constantly feeding upon the plants. But the process seems to be a never-ending one. It would seem that the material for plant food and animal food would sometime be used up; and yet nature is perpetual. Now, the reason that nature is perpetual is, because animals and plants are enabled, by certain processes of nature, to use the same material over and over again. They can use material for food, and eventually that same material gets in a condition in which they can use it for food once more. Let me take a single illustration, one that you are probably all familiar with. Plants, as the result of their life, use up carbonic acid of the air, and, in return, send off into the air an equivalent amount of oxygen. Now, animals in their life, take out of the air a considerable amount of oxygen and send off from their bodies an equivalent amount of carbonic acid. You see here one of the adjustments of nature. Animals use the excretions of plants, plants use the excretions of animals. The animals take oxygen and give off carbonic acid, and the plants take carbonic acid and give off oxygen. This process goes on continually and thus the condition of the atmosphere, so far as oxygen and carbonic acid are concerned, is kept in the same normal state. Thus, so far as these gases are concerned, nature is enabled to be
perpetuated by the constant use of the same material over and over again.

Now, this is not only true in regard to oxygen and carbonic acid, but it is true also that all the other foods of animals and plants are capable of being used over and over again. Plants live upon phosphates, sulphates, and nitrates chiefly, as well as carbonic acid. Animals live upon such things as albuminoids and starches and sugars. Now, plants cannot live on the food of animals, and animals cannot live on the food of plants. You and I cannot live upon sulphates and phosphates and potassium salts and nitrates and carbonic acid. These are what we call inorganic compounds in nature. Animals cannot feed upon them, but plants can do so. The plants can take those materials and manufacture out of them the starches and sugars and fats and albuminoids, and then we can take the starches and sugars and fats and albuminoids which have thus been manufactured for us and feed upon them. You see, therefore, that the plants serve as a medium of communication between animals and nature. The world is made up chiefly of inorganic compounds like these phosphates and sulphates and potassium salts, etc., and the plants serve as a means of communication between animals and the inorganic world, for the plants take these inorganic materials and make them into something which we can use as food. Plants, then, are the means which we have of making use of inorganic nature; or, in other words, the whole animal kingdom is parasitic upon plants. But plants are in their turn utterly unable to live upon animal foods. A plant cannot feed upon albumen, a plant cannot eat starch, a plant cannot eat sugar, a plant cannot eat fat; plants are unable to use the foods that animals use, and when the body of a plant dies, although it is in a condition to be used as food by animals, it is not in a condition to be used again as food for plants. The dead body of the bird is in a condition in which plants cannot make use of it at all. A plant cannot use the albumen of the bird's tissue; a plant cannot use the fats in an animal; a plant cannot feed upon the sugars that are in the dead sugar-cane; a plant cannot feed upon the
PLATE XXVII.

starches or the cellulose that is in the body of the dead tree. Nevertheless, the plants do succeed in getting hold of this food, and it is through the agency of these bacteria that we are speaking of this morning that they do it. Just as soon as the body of an animal or plant dies, the bacteria get into it, begin to grow in it, decomposing it, and pulling it to pieces. They pull the starch to pieces, they pull the sugar to pieces, and albumens and fats share the same destruction. Little by little they take those compounds which plants cannot feed upon, and, by shaking them to pieces, bring them down to simple combinations which plants can feed upon.

Of special importance is one particular kind of organism known as "the nitrifying organism," which produces nitric acid. Plants as I have said, cannot feed upon such things as albumen. The putrefying bacteria can decompose albumen and break it up into certain simple compounds, but ordinary putrefying bacteria are not able to break that albumen down far enough for plants to get hold of it. Plants have got to live upon such things as nitrates and salts of nitric acid. Now, there is one sort of bacteria living in the soil which gets hold of the albuminous compounds and forms nitric acid. This is the nitrifying organism, and the nitrification is the last stage in the decomposition process by which an albuminoid is converted into a condition in which plants can get hold of it. One practical application of this you are all familiar with in the ripening of fertilizers. You know that green manure is of absolutely or of practically no use as a fertilizer on your fields. You know that it must first stand for a while and ripen, or "rot," as you call it. Now, what is taking place in that fertilizer while it is ripening? Simply the series of changes that have been mentioned. That fertilizer contains chemical compounds of a high degree of complexity, compounds that the plants cannot feed upon; they are too highly complex for plants to use as food. Bacteria, however, get into that heap and begin to grow in it; and, as the fertilizer becomes ripened, these high chemical compounds are pulled to pieces, they become converted into simpler decomposition products, and eventually, if the ripening be
continued long enough, the fertilizer is in a condition fit for for the fields. Now, when put upon the fields, the plants can get hold of the material. You will see now what I meant when I stated at the beginning of my lecture that in spite of all the cultivating that you and your horses might do in the fields, it would be useless without the agency of these organisms. You might put on your fertilizer; but, if that fertilizer be not acted upon by bacteria, it will be of no use, and thus the bacteria come in to complete the operation which you began. You do your duty and the bacteria do theirs, and the consequence is, the fertilizers which you are using are brought into a condition in which the plants can get hold of them, and thus the food of plants is produced. You see, then, that in this way plants and animals are able to use over and over again the same material. The plant gets this material out of the soil and out of the air; the animal comes along then and feeds upon the plant; then the animal dies, and the plant dies, and the bacteria get into the body of the animal or plant, pull it to pieces and produce from it decomposition products, and they get into the soil in the form of nitrates and nitric acid compounds; or they go off into the air in the form of ammonia and carbonic acid. The bodies of these animals and plants are thus reduced to simple conditions and now the plants once more get hold of them, and use as food the same material that previous generations used. Thus over and over again the same material is used, and thus nature is kept perpetual. This is the explanation of the constant, perpetual growth in nature. This is the reason that nature does not exhaust itself. This is the reason that animals and plants have been enabled to grow upon the surface of the earth for the past hundreds and hundreds of centuries.

But this is not the end of the agency of bacteria in plant life. They are not only of value in ripening your fertilizers and in keeping up this constant growth of nature, but we have learned within the last two or three years that at the very foundation the growth of plants is absolutely dependent upon these organisms, and similarly in the future the continuance of the vegetable world must be also dependent upon
them. I have stated that nature is perpetual because the same material can be used over and over again. That is true in a sense, but not true completely, for you will see with a little thought that little by little the soil is being drained of its food, little by little the materials in the soil are being turned into the ocean. A tree grows, takes out of the soil its food, and finally dies. If it falls on to the ground, as I have described, the bacteria get at it and grow there until the tree eventually becomes wholly incorporated into soil so that it can be used once more as plant food. But it may be that the tree instead of falling in the forest falls into a river, drifts down the river, begins to decay, and eventually goes into the ocean. After the products of decomposition are passed into the ocean, there is no getting them back to the soil. "The sea will not give up its dead," and the ocean does not give up the nitrogen and the other salts that are gradually being carried to it by this process. Or, again, a plant grows and produces wheat, produces fruit, produces nuts, and the grain, the fruit, and the nuts are taken to the city to be used as food for men. The food is used by men, and most of it eventually gets into the sewage of the city, is carried down to the river, and from the river it is carried into the ocean. So here again through the sewage of our cities, the foods which are supplied to our cities are being thrown into the ocean and thus the soil is being drained of its foods. This process is not a rapid one. It is only slowly that the foods are being taken out of the soil and carried to the ocean. Nevertheless, it is the constant dropping that wears away the rock, and it is easy for us to see that if this process goes on age after age, our souls are inevitably doomed to exhaustion. You know that many fields have become sterile, that many farms have been worn out, that many gardens are becoming infertile. You cannot cultivate your fields as you used to without furnishing them food. In the old world this is quite noticeable. Although the constant drainage of the soil by these agencies is a slow one, it is a sure one, and if there be no way of getting nitrogen and other salts back from the ocean to the soil, it would seem that the life of all vegetation is inevitably doomed to exhaustion, and with
the life of vegetation the life of animals must cease. The whole living world must end.

When the scientist observed this fact he immediately looked around to see if there was not a remedy for it. Now, as far as some of the plant foods are concerned, there does not seem to be any occasion for fear. The phosphates, the sulphates and the potassium salts, which are plant foods, seem to exist on the surface of the earth in almost unlimited quantities. There have been immense amounts of these salts found in certain parts of the world, and they can be mined at very small expense; they can be taken all over the world and put directly upon the soil, so that the sulphates, phosphates and potassium salts are in practically unlimited quantities. We have no fear so far as they are concerned. For an indefinite number of ages to come there is plenty of this sort of food on the surface of the earth for us to supply to the soil. But that is not true of the nitrogenous foods. Of course every farmer knows to-day that nitrogenous food is one of the very essential foods of plants, and it is not true that there is an unlimited quantity of nitrogenous salts anywhere in the world. There are a few sources of nitrogen other than the soil. The chief one is the guano beds in the South Pacific. These are sources of nitrogenous compounds, and upon these sources the agricultural industry of the world has been drawing for years, and will continue to draw until they are exhausted. But these sources are far away. The nitrogen that we get from them is very expensive, and the store is very limited in quantity. We can see in the not very distant future the complete exhaustion of all these nitrogen beds. This has led scientists to look with a considerable degree of dismay upon the future of the vegetable world. What is going to happen when all the available nitrogen is used up? If we are going to continue to take the nitrogen from the soil and throw it into the ocean we will soon exhaust the soil, and if there is no store of nitrogen anywhere for our plants to draw upon what are our plants going to do in the future?

Now there is a store of nitrogen in the world which is absolutely unlimited, and that is in the air that surrounds us. The
air that we breathe is made up of four parts of nitrogen and one part of oxygen. There are quantities of nitrogen everywhere if the plants could only get hold of it, but it has been thought that plants cannot feed on the nitrogen in the air at all. Experiments have been carried on for a great many years to find out whether plants could not in some way or other get hold of the nitrogen of the air. If we could only prove that our plants can get hold of the nitrogen in the air then the problem is solved. But the experiments which have been carried on year after year have seemed to demonstrate that plants cannot use the nitrogen of the air for food, that it is not in a condition in which they can get hold of it. About ten years ago, however, certain experimenters in this country and in Europe found that in some of their experiments plants did in some way get hold of nitrogen from some source when it was not fed to them; that a plant could be grown in sand absolutely free from nitrogen, and yet in some way that plant got hold of nitrogen; the only source for it was out of the air. That led to further experimentation until within the last four or five years the results have all been pointing in one direction. They seem to show us that there is one family of plants at least, which is capable of getting hold of nitrogen out of the air. This is the plant family to which the pea, the bean and the clover belong. It is, in general, the pea family—the Leguminosae family of plants. This family of plants in some way does succeed in getting nitrogen from some source when we do not give it to them as food, and it must be that they get it from the air. And yet those experiments are entirely contradictory to the earlier experiments which seemed to show that plants could not get hold of nitrogen in the air. The explanation was not found until a few years ago. Two or three years ago some experiments were performed in Germany which have finally led to the solution of the problem, at least in part, and, curiously enough, we find that the whole secret of the matter is connected with these organisms which I am discussing this morning. It is to bacteria that we owe this power which is possessed by plants of the pea family to get hold of nitrogen. If you plant peas in soil containing a cer-
tain species of bacteria, or at least certain species of micro-
organisms, these micro-organisms crawl into the roots of the
pea, and then begin to multiply inside the roots. The little
roots begin to swell and there appear upon them a lot of min-
ute nodules, which have received the name of "root-tuber-
cles." If I am not mistaken some of those little root tubercles
were shown to the meeting here last evening. These root
tubercles, as I say, make their appearance, and it is found that
wherever these root tubercles do make their appearance the
plant gets hold of nitrogen and grow well. Where these root
tubercles do not make their appearance the plant is unable to
get hold of the nitrogen unless it is fed to them. Now these
root tubercles are produced by bacteria, and these root tuber-
cles are the agencies by which, in some as yet unexplained
way, the pea gets nitrogen out of the air.

Thus you see that in the final analysis of the life of a plant,
in the assimilation of nitrogen from the air, we are brought to
the conclusion that it is the agency of these minute micro-
scopie organisms that is the source of the assimilation of
nitrogen from the air by plants. Thus we owe the growth of
these plants to bacteria. How the bacteria get the nitrogen
out of the air has not yet been explained.

Even before the scientists made this discovery the farmer
had made the discovery practically on his farm. You have
known that you could in some, to you inexplicable, way reju-
venate an old, worn-out soil by cultivating clover upon it, or
by cultivating beans. That has been the practice of farmers
for years. It has been found that in some way the cultivation
of clover, instead of exhausting your soil as the cultivation of
some plants does, really increases the fertility of the soil.
You cultivate your clover for one season, then the next season
you plow the roots into your soil, and you find the field will
produce a better crop than before. This result is brought about
through the agency of these organisms. The clover belongs
to the family of peas, and clover is one of the plants that this
particular species of bacteria that I am speaking of can attack.
The bacteria in the soil get into these roots, grow in them,
produce these root tubercles, and by means of these the clover
gets nitrogen out of the air and stores it up in its roots. The next season you plow the roots into the soil, and then come the nitrifying bacteria which pull the roots to pieces and decompose them into the condition of nitrates, and then the next season the plant which you sow gets hold of the nitrates which came from the roots of the clover and which has been brought there through the agency of these bacteria. You see, then, that the farmer owes everything to the bacteria.

I think you will find that I am justified in the statement I made at the beginning that the study of bacteriology to-day is even more truly a department of agriculture than of medicine. The bacteria belong to the farmer more truly, or at least as truly, as they belong to the physician.

Now I must draw my remarks to a close. Let me, in conclusion, say that we must not think too hardly of bacteria. It is true they are the causes of evil, it is true that they produce disease, but it is also true that they do good. It is true that they are our enemies but it is also true that they are our closest allies. It is true that without them we could not have our small-pox nor our yellow-fever, we could not have our diphtheria or our scarlet fever, neither could we have the epidemic which is at present going over this country, nor in fact should we have any of our epidemics were it not for the bacteria. But when we remember that it is through the agency of these organisms that we bake the loaf of bread that comes onto our table, that it is through their agency that the immense brewing industries are able to exist, that it is through their agency that the industries connected with the manufacture of alcoholic liquors are possible; that without them we could not get our vinegar or our lactic acid; that without them we could not make our ensilage; when we remember that these bacteria give the butter-maker the aroma of his butter; when we remember that it is the decomposition products of the bacteria that the cheese manufacturer sells in the market; when we remember their agency as scavengers, how it is that they keep the surface of the earth clean and fresh and pure and in a constant condition for the continued growth of plants; when we remember their value to the soil in decomposing the dead
bodies of animals and plants, and thus enabling the same material to be used over and over again for the support of life, and hence making possible a constant, perpetual condition of nature; and when we remember, lastly, that it is only through their agency that plants were originally enabled to get hold of nitrogen at all and that it is only through the agency of these bacteria that we may hope for a continuance of a supply of nitrogen to the soil, when we remember all these things I think we will recognize that the power of the bacteria for good far outweighs their power for evil. Without them we should not have our epidemics, but without them we should not exist. Without them it might be that some individuals would live a little longer, if we could live at all. It is true that bacteria, by the production of diseases once in a while, cause the premature death of an individual; once in a while they will sweep off a hundred or a thousand individuals, but it is equally true that if it were not for them plant life and animal life would be absolutely impossible on the face of the world.—Connecticut Agric. Report, 1892.