Skip to main content

Numerous climate models predict that the geography of the supercontinent Pangea was conducive to the establishment of a "megamonsoonal" circulation. In general, geologic evidence supports the hypothesis of a megamonsoon that reached maximum strength in the Triassic. Pangea in the Late Carboniferous had widespread peat formation in what is now central and eastern North America and Europe and relatively dry conditions on the Colorado Plateau. The equatorial region of the continent became drier through the end of the Carboniferous. By the Permian, the equatorial region of Pangea was dry, and indicators of aridity and rainfall seasonality became more widespread. Wind directions from Colorado Plateau eolian sandstones are consistent with an increasing influence of monsoonal circulation at this time. In the Triassic, climate in the Colorado Plateau region became relatively wet, though still seasonal, and the few eolian sandstones indicate a major shift in wind direction at that time. In addition, sedimentation in Australia, which was in relatively high latitudes, took on a much drier and more seasonal character. These two events support the hypothesis that the Pangean monsoon was at maximum strength during the Triassic. In the Early Jurassic, the Colorado Plateau region became arid again, but climate apparently became wetter in eastern Laurussia and Gondwana. Finally, drying occurred in Gondwana and southern Laurasia, indicative of the breakdown of the Pangean monsoon.